
`	

MPI,	Dataflow,	Streaming:	Messaging	for	
Diverse	Requirements

Argonne	Na<onal	Lab,	Chicago,	Illinois,	
Geoffrey	Fox,	September	25,	2017

Indiana University, Department of Intelligent Systems Engineering
gcf@indiana.edu, http://www.dsc.soic.indiana.edu/, http://spidal.org/

Work	with	Judy	Qiu,	Shantenu	Jha,	Supun	Kamburugamuve,	Kannan	Govindarajan,	Pulasthi	Wickramasinghe	

9/26/17	 1	

25 years of MPI Symposium	

Abstract:	MPI,	Dataflow,	Streaming:	Messaging	for	
Diverse	Requirements	

• We	look	at	messaging	needed	in	a	variety	of	parallel,	distributed,	cloud	
and	edge	compuHng	applicaHons.		

• We	compare	technology	approaches	in	MPI,	Asynchronous	Many-Task	
systems,	Apache	NiFi,	Heron,	KaRa,	OpenWhisk,	Pregel,	Spark	and	
Flink,	event-driven	simulaHons	(HLA)	and		MicrosoW	Naiad.		

• We	suggest	an	event-triggered	dataflow	polymorphic	runHme	with	
implementaHons	that	trade-off	performance,	fault	tolerance,	and	
usability.	

• Integrate	Parallel	CompuHng,	Big	Data,	Grids	

9/26/17	 2	

• MPI	is	wonderful	(and	impossible	to	beat?)	for	closely	coupled	parallel	
compuHng	but		

•  There	are	many	other	regimes	where	either	parallel	compuHng	and/or	message	passing	
essenHal	

•  ApplicaHon	domains	where	other/higher-level	concepts	successful/necessary	
•  Internet	of	Things	and	Edge	Compu<ng	growing	in	importance	
• Use	of	public	clouds	increasing	rapidly	

•  Clouds	becoming	diverse	with	subsystems	containing	GPU’s,	FPGA’s,	high	performance	
networks,	storage,	memory	…	

• Rich	soRware	stacks:	
•  HPC	(High	Performance	CompuHng)	for	Parallel	CompuHng	less	used	than(?)	
•  Apache	for	Big	Data	SoWware	Stack	ABDS	including	some	edge	compuHng	(streaming	
data)	

• A	lot	of	confusion	coming	from	different	communiHes	(database,	distributed,	
parallel	compuHng,	machine	learning,	computaHonal/data	science)		
invesHgaHng	similar	ideas	with	lible	knowledge	exchange	and	mixed	up	
requirements	

Mo<va<ng	Remarks	

9/26/17	 3	

•  On	general	principles	parallel	and	distributed	compu<ng	have	different	requirements	even	if	
someHmes	similar	funcHonaliHes	

•  Apache	stack	ABDS		typically	uses	distributed	compuHng	concepts	
•  For	example,	Reduce	operaHon	is	different	in	MPI	(Harp)	and	Spark	

•  Large	scale	simulaHon	requirements	are	well	understood	
•  Big	Data	requirements	are	not	clear	but	there	are	a	few	key	use	types	

1)  Pleasingly	parallel	processing	(including	local	machine	learning	LML)	as	of	different	
tweets	from	different	users	with	perhaps	MapReduce	style	of	staHsHcs	and	
visualizaHons;	possibly	Streaming	

2)  Database	model	with	queries	again	supported	by	MapReduce	for	horizontal	scaling	
3)  Global	Machine	Learning	GML		with	single	job	using	mulHple	nodes	as	classic	parallel	

compuHng	
4)  Deep	Learning	certainly	needs	HPC	–	possibly	only	mulHple	small	systems	

•  Current	workloads	stress	1)	and	2)	and	are	suited	to	current	clouds	and	to	ABDS	(with	no	HPC)	
•  This	explains	why	Spark	with	poor	GML	performance	is	so	successful	and	why	it	can	ignore	
MPI	

Requirements	

9/26/17	 4	

HPC	Run<me	versus	ABDS	distributed	Compu<ng	
Model	on	Data	Analy<cs	

Hadoop	writes	to	disk	and	is	slowest;	
Spark	and	Flink	spawn	many	processes	and	
do	not	support	AllReduce	directly;		
MPI	does	in-place	combined	reduce/
broadcast	and	is	fastest	

Need	Polymorphic	ReducHon	capability	
choosing	best	implementaHon	
	
Use	HPC		architecture	with	

Mutable	model	
Immutable	data	

9/26/17	 5	

Mul<dimensional	Scaling:	3	Nested	Parallel	Sec<ons	

MDS	execuHon	Hme	on	16	nodes	
with	20	processes	in	each	node	with	

varying	number	of	points	

MDS	execuHon	Hme	with	32000	
points	on	varying	number	of	nodes.	
Each	node	runs	20	parallel	tasks	

9/26/17	 6	

Flink	

Spark	

MPI	

MPI	Factor	of	20-200	Faster	than	Spark/Flink	

Implemen<ng	Twister2	
to	support	a	Grid	linked	to	an	HPC	Cloud	

Cloud	
					

HPC	

Cloud	
					

HPC	

Centralized	HPC	Cloud	+	IoT	Devices	 Centralized	HPC	Cloud	+	Edge	=	Fog	+	IoT	Devices	

Cloud	
					

HPC	

Fog	

HPC	Cloud	can		
be	federated		

9/26/17	 7	

•  Cloud-owner	Provided	Cloud-naHve	plaporm		for	
•  Event-driven	applicaHons	which		
•  Scale	up	and	down	instantly	and	automaHcally	
Charges	for	actual	usage	at	a	millisecond	
granularity	

4

Bare	Metal

PaaS
Container	

Orchestrators

IaaS

Serverless

GridSolve,	Neos	were	FaaS	

9/26/17	 8	

See	review	hbp://dx.doi.org/10.13140/RG.2.2.15007.87206		

Serverless	(server	hidden)	
compu<ng	a\rac<ve	to	user:			
“No	server	is	easier	to	
manage	than	no	server”	

Twister2:	“Next	Genera<on	Grid	-	Edge	–	HPC	Cloud”	
•  Original	2010	Twister	paper	was	a	parHcular	approach	to	Map-CollecHve	iteraHve	
processing	for	machine	learning	

•  Re-engineer	current	Apache	Big	Data	soWware	systems	as	a	toolkit	with	MPI	as	an	opHon	
•  Base	on	Apache	Heron	as	most	modern	and	“neutral”	on	controversial	issues	

•  Support	a	serverless	(cloud-na<ve)	dataflow	event-driven	HPC-FaaS	(microservice)	
framework	running	across	applicaHon	and	geographic	domains.		

•  Support	all	types	of	Data	analysis	from	GML	to	Edge	compuHng	

•  Build	on	Cloud	best	pracHce	but	use	HPC	wherever	possible	to	get	high	performance	
•  Smoothly	support	current	paradigms	Naiad,	Hadoop,	Spark,	Flink,	Storm,	Heron,	MPI	…	
•  Use	interoperable	common	abstracHons	but	mulHple	polymorphic	implementaHons.	

•  i.e.	do	not	require	a	single	runHme	

•  Focus	on	RunHme	but	this	implies	HPC-FaaS	programming	and	execuHon	model	
•  This	describes	a	next	genera<on	Grid	based	on	data	and	edge	devices	–	not	compuHng	
as	in	original	Grid	 See	long	paper	hbp://dsc.soic.indiana.edu/publicaHons/Twister2.pdf	

9/26/17	 9	

Communica<on	(Messaging)	Models	
•  MPI	Gold	Standard:	Tightly	synchronized	applicaHons	

•  Efficient	communicaHons	(µs	latency)	with	use	of	advanced	hardware		
•  In	place	communicaHons	and	computaHons	(Process	scope	for		state)	

•  Basic	(coarse-grain)	dataflow:	Model	a	computaHon	as	a	graph	
•  Nodes	do	computaHons	with	Task	as	computaHons	and		
edges	are	asynchronous		communicaHons	

•  A	computaHon	is	acHvated	when	its	input	data	dependencies	
	are	saHsfied	

•  Streaming	dataflow:	Pub-Sub	with	data	parHHoned	into	streams	
•  Streams	are	unbounded,	ordered	data	tuples	
•  Order	of	events	important	and	group	data	into	Hme	windows	

• Machine	Learning	dataflow:	IteraHve	computaHons	
•  There	is	both	Model	and	Data,	but	only	communicate	the	model	
•  Collec<ve	communica<on	operaHons	such	as	AllReduce	AllGather	(no	differenHal	operators	in	Big	
Data	problems	

•  Can	use	in-place	MPI	style	communicaHon	

S	

W	 G	

S	

W	

W	
Dataflow	

9/26/17	 10	

Core	SPIDAL	Parallel	HPC	Library	with	Collec<ve	Used	
•  DA-MDS	Rotate,	AllReduce,	Broadcast	
•  Directed	Force	Dimension	ReducHon	AllGather,	
Allreduce	

•  Irregular	DAVS	Clustering	ParHal	Rotate,	
AllReduce,	Broadcast	

•  DA	Semimetric	Clustering	Rotate,	AllReduce,	
Broadcast	

•  K-means	AllReduce,	Broadcast,	AllGather	DAAL	
•  SVM	AllReduce,	AllGather	
•  SubGraph	Mining	AllGather,	AllReduce	
•  Latent	Dirichlet	AllocaHon	Rotate,	AllReduce	
•  Matrix	FactorizaHon	(SGD)	Rotate	DAAL	
•  Recommender	System	(ALS)	Rotate	DAAL	
•  Singular	Value	DecomposiHon	(SVD)	AllGather	
DAAL	

•  QR	DecomposiHon	(QR)	Reduce,	Broadcast	DAAL	
•  Neural	Network	AllReduce	DAAL	
•  Covariance	AllReduce	DAAL	
•  Low	Order	Moments	Reduce	DAAL	
•  Naive	Bayes	Reduce	DAAL	
•  Linear	Regression	Reduce	DAAL	
•  Ridge	Regression	Reduce	DAAL	
•  MulH-class	LogisHc	Regression	Regroup,	Rotate,	
AllGather	

•  Random	Forest	AllReduce	
•  Principal	Component	Analysis	(PCA)	AllReduce	
DAAL	

DAAL	implies	integrated	with	Intel	DAAL	OpHmized	Data	AnalyHcs	Library	(Runs	on	KNL!)		

9/26/17	 11	

Coordina<on	Points	
•  There	are	in	many	approaches,	“coordinaHon	points”	that	can	be	implicit	or	
explicit	

•  Twister2	makes	coordinaHon	points	an	important	(first	class)	concept	
•  Dataflow	nodes	in	Heron,	Flink,	Spark,	Naiad;	we	call	these	fine-grain	data	flow	
•  Issuance	of	a	CollecHve	communicaHon	command	in	MPI	
•  Start	and	End	of	a	Parallel	secHon	in	OpenMP	
•  End	of	a	job;	we	call	these	coarse-grain	data	flow	nodes	and	these	are	seen	in	workflow	
systems	such	as	Pegasus,	Taverna,	Kepler	and	NiFi	(from	Apache)	

•  Twister2	will	allow	users	to	specify	the	existence	of	a	named	coordinaHon	point	
and	allow	acHons	to	be	iniHated	

•  Produce	an	RDD	style	dataset	from	user	specified		
•  Launch	new	tasks	as	in	Heron,	Flink,	Spark,	Naiad	
•  Change	execuHon	model	as	in	OpenMP	Parallel	secHon	

9/26/17	 12	

NiFi	Workflow	with	Coarse	Grain	Coordina<on	

9/26/17	 13	

K-means	and	Dataflow	

9/26/17	 14	

Map	(nearest	
centroid	

calculaHon)	

Reduce	
(update	
centroids)	

Data	Set	
<Points>	

Data	Set	<IniHal	
Centroids>	

Data	Set	
<Updated	
Centroids>	

Broadcast	

Dataflow	for	K-means	

Full	
Job	Reduce	

Maps	

Iterate	

Another	
Job	

Corse	Grain	
Workflow		Nodes	 Coarse	Grain	

Workflow		Nodes	

Internal	ExecuHon	
(IteraHon)	Nodes	
Fine-Grain	
CoordinaHon	

Dataflow		
CommunicaHon	

HPC	
CommunicaHon	

“CoordinaHon	Points”	

Handling	of	State	
• State	is	a	key	issue	and	handled	differently	in	systems	
• MPI	Naiad,	Storm,	Heron	have	long	running	tasks	that	preserve	state	

• MPI	tasks	stop	at	end	of	job	
• Naiad	Storm	Heron	tasks	change	at	(fine-grain)	dataflow	nodes	but	all	tasks	
run	forever	

•  Spark	and	Flink	tasks	stop	and	refresh	at	dataflow	nodes	but	preserve	some	
state	as	RDD/datasets	using	in-memory	databases	

• All	systems	agree	on	acHons	at	a	coarse	grain	dataflow	(at	job	level);	
only		keep	state	by	exchanging	data.	

9/26/17	 15	

Fault	Tolerance	and	State 	 		
• Similar	form	of	check-poin<ng	mechanism	is	used	already	in	HPC	
and	Big	Data		

• although	HPC	informal	as	doesn’t	typically	specify	as	a	dataflow	graph	
• Flink	and	Spark	do	beber	than	MPI	due	to	use	of	database	technologies;	
MPI	is	a	bit	harder	due	to	richer	state	but	there	is	an	obvious	integrated	
model	using	RDD	type	snapshots	of	MPI	style	jobs	

• Checkpoint	aRer	each	stage	of	the	dataflow	graph	
• Natural	synchronizaHon	point	
• Let’s	allows	user	to	choose	when	to	checkpoint	(not	every	stage)	
• Save	state	as	user	specifies;	Spark	just	saves	Model	state	which	is	
insufficient	for	complex	algorithms	

9/26/17	 16	

Twister2	Components	I	

9/26/17	 17	

Area	 Component	 Implementation	 Comments	

Distributed Data
API

Relaxed Distributed
data set

Similar to Spark RDD ETL type data applications; Streaming
Backup for Fault Tolerance

Streaming Pub-Sub and Spouts as in Heron API to pub-sub messages
Data access Access common data sources including

file, connecting to message brokers etc.
All the above applications can use this
base functionality

Distributed Shared
Memory

Similar to PGAS Machine learning such as graph algorithms

Task API
FaaS API
(Function as a
Service)

Dynamic Task
Scheduling

Dynamic scheduling as in AMT Some machine learning
FaaS

Static Task Scheduling Static scheduling as in Flink & Heron Streaming
ETL data pipelines

Task Execution Thread based execution as seen in Spark,
Flink, Naiad, OpenMP

Look at hybrid MPI/thread support
available

Task Graph Twister2 Tasks similar to Naiad and Heron

Streaming and FaaS
Events

Heron, OpenWhisk, Kafka/RabbitMQ Classic Streaming
Scaling of FaaS needs Research

Elasticity OpenWhisk Needs experimentation
Task migration Monitoring of tasks and migrating tasks for

better resource utilization

Twister2	Components	II	

9/26/17	 18	

Area Component Implementation Comments

Communication
API

Messages	 Heron	 This	is	user	level	and	could	map	to	
mulHple	communicaHon	

Dataflow
Communication

Fine-Grain Twister2 Dataflow
communications: MPI,TCP and RMA
Coarse grain Dataflow from NiFi,
Kepler?

Streaming
Machine learning
ETL data pipelines

BSP Communication
Map-Collective

MPI Style communication
Harp

Machine learning

Execution
Model

Architecture Spark, Flink Container/Processes/Tasks=Threads
Job Submit API
Resource Scheduler

Pluggable architecture for any resource
scheduler (Yarn, Mesos, Slurm)

All the above applications need this
base functionality

Dataflow graph
analyzer & optimizer

Flink Spark is dynamic and implicit

Coordination Points
Specification and
Actions

Research based on MPI, Spark, Flink,
NiFi (Kepler)

Synchronization Point.
Backup to datasets
Refresh Tasks

Security Storage, Messaging,
execution

Research Crosses all Components

Summary of MPI in a
HPC Cloud + Edge + Grid Environment

• We	suggest	value	of	an	event	driven	compuHng	model	built	around	Cloud	and	HPC	
and	spanning	batch,	streaming,	and	edge	applicaHons	

•  Highly	parallel	on	cloud;	possibly	sequenHal	at	the	edge	
• We	have	done	a	preliminary	analysis	of	the	different	runHmes	of	MPI,	Hadoop,	Spark,	
Flink,	Storm,	Heron,	Naiad,	HPC	Asynchronous	Many	Task(AMT)	

•  There	are	different	technologies	for	different	circumstances	but	can	be	unified	by	high	
level	abstracHons	such	as	communicaHon	collecHves	

•  Obviously	MPI	best	for	parallel	compuHng	(by	definiHon)	

•  Apache	systems	use	dataflow	communicaHon	which	is	natural	for	distributed	systems	
but	inevitably	slow	for	classic	parallel	compuHng	

•  No	standard	dataflow	library	(why?).	Add	Dataflow	primi<ves	in	MPI-4?	

• MPI	could	adopt	some	of	tools	of	Big	Data	as	in	CoordinaHon	Points	(dataflow	nodes),	
State	management	with	RDD	(datasets)	

9/26/17	 19	

